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Abstract 

Active machine learning is an established and increasingly popular experimental design technique 

where the machine learning model can request additional data to improve the model’s predictive 

performance. It is generally assumed that this data is optimal for the machine learning model since 

it relies on the model’s predictions or model architecture and therefore cannot be transferred to 

other models. Inspired by research in pedagogy, we here introduce the concept of yoked machine 

learning where a second machine learning model learns from the data selected by another model. 

We found that in 48% of the benchmarked combinations, yoked learning performed similar or 

better than active learning. We analyze distinct cases in which yoked learning can improve active 

learning performance. In particular, we prototype Yoked Deep Learning (YoDeL) where a classic 

machine learning model provides data to a deep neural network, thereby mitigating challenges of 

active deep learning such as slow refitting time per learning iteration and poor performance on 

small datasets. In summary, we expect the new concept of yoked (deep) learning to provide a 

competitive option to boost the performance of active learning and benefit from distinct 

capabilities of multiple machine learning models during data acquisition, training, and deployment. 
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I. Introduction 

Active machine learning enables a machine learning (ML) algorithm to request additional 

data, thereby putting the ML model itself into the driver's seat of experimental design to focus data 

acquisition on the most useful data for the model [1]. This adaptive data selection can rapidly boost 

predictive performance and expand the application domain of a ML model. Active learning (AL) 

has shown great promise in various applications such as image classification [2], speech 

recognition [3], and molecular data science to hasten drug discovery and development [1, 4]. The 

improved performance in these studies has been attributed to the ability of AL to specifically 

employ the ML model architecture to enable the selection of the most useful data for the model at 

hand [5]. For example, by specifically requesting labels for data with the highest predictive 

uncertainty, AL focuses resources on data least understood by the model. The definition of a 

selection function can include predictive uncertainty or expected changes to the model architecture 

[1]. In either case, the model is actively consulted for the experimental design and thereby the 

implicit assumption is that access to the specific model architecture is necessary for optimal active 

learning performance. It could be reasonable to assume that replacing the model’s uncertainty with 

another ML model’s uncertainty would lead to a suboptimal performance given the different 

perspectives of the two models imposed by their respective predictive architectures. To the best of 

our knowledge, this hypothesis has never been directly tested in ML research. 

Meanwhile, pedagogical research of AL in the classroom setting has established the 

concept of “yoked learning” where a student passively observes the AL process of another student 

[6]. Such an experimental setup enables education researchers to quantify how much a student 

benefits from selecting data themselves rather than simply observing data that was deemed 

valuable by another student. Such experimental protocols have been used as early as 1962 [7] and 

https://doi.org/10.26434/chemrxiv-2023-80fd7 ORCID: https://orcid.org/0000-0003-4789-7380 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-80fd7
https://orcid.org/0000-0003-4789-7380
https://creativecommons.org/licenses/by-nc/4.0/


4 
 

continue to inform learning research by quantifying the benefits or challenges of AL compared to 

learning from observing others [8]. Some of the key studies in this research area have indicated 

yoked learning provides benefits to the random selection of data but often fails to achieve the same 

performance as active learning. This suggests that the active selection of novel data by the students 

themselves is key to the increased efficiency of AL and that the learning process is subjective since 

the information acquired by one student is unlikely to benefit another student to the same extent.  

In the present study, we introduced the concept of “yoked (machine) learning” (YoL). In 

YoL, a “teacher” model is used to guide data acquisition, while another “student” model is trained 

using the training set provided by the teacher model (Fig. 1). We systematically investigated the 

YoL approach by pairing three ML models using three molecular descriptors on 14 benchmarking 

dataset and compared them with AL and passive learning (PL, random selection). Our study finds 

that AL outperforms YoL in approximately half of the investigated tasks, indicating the data 

selected by a model can indeed be most beneficial to the model itself and is less informative for 

other models. A few outlier cases highlight particularly strong benefits of active learning. However, 

in the other half of the cases, YoL performed similarly or better than AL, indicating that in certain 

tasks a surrogate model might provide similar or better performance compared to AL. We 

investigate these cases and propose future applications of yoked learning. Motivated by our results 

when pairing classical ML algorithms, we introduce the concept of yoked deep learning (YoDeL) 

where data selected by a classic ML algorithm is provided to a deep neural network model. 

Compared to active deep learning (AdeL) where the deep neural network itself is responsible for 

selecting data, YoDel dramatically accelerates learning by circumventing re-training of complex 

deep neural network architectures while showing competitive performance. 
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Taken together, our study and novel experimental setup provides the first direct 

quantification of the benefits of AL, which enables a more rigorous understanding of active ML 

performance and will facilitate its future deployment. Furthermore, the yoked learning approach 

not only enables the investigation of AL but constitutes a novel adaptive ML approach that 

warrants further study and holds a significant potential to boost AL performance, accelerate 

learning campaigns, and enable the integration of ML models that are currently not amenable to 

AL such as certain types of deep neural networks. 
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II. Materials and Methods 

Datasets and descriptors 

14 single-task, binary classification datasets were selected from the Therapeutics Data 

Commons (TDC) [9] and MoleculeNet [10] (Table 1). Data was downloaded as SMILES 

structures and the molecules were subsequently encoded as Morgan Fingerprints (1024 bits, radius 

of 2) or MACCS Key Fingerprints using RDKit [11], or with standardized RDKit Descriptors 

using the DeepChem “featurize” function (version 2.5.0) [12]. 

 

Machine learning models 

 We examined three classical ML models implemented in scikit-learn (version 1.0.2) [13] 

with default parameters: Random Forest (RF), Logistic Regression (LR), and Naive Bayes 

classifier for multivariate Bernoulli models (NB). In addition, we test the performance of a deep 

multilayer perceptron (MLP) based on the implementation in Chemprop [14]. For the MLP we 

used the default set of parameters (2 hidden layers, 300 nodes per layer, 0% dropout probability, 

50 epochs, ReLU activation function [15], cross entropy loss function) since an optimized 

parameter set (Table S1) did not show improved performance. 

 

Active and yoked learning 

For classical ML models, the data was split 50:50 into a pool set and a test set using 

scaffold-based grouping implemented in TDC [9]. The training set was initialized with two 

randomly selected data points from the pool set, one “positive” and one “negative”. New data is 

then iteratively selected from the pool set and added to the training set following random selection 

(passive learning, PL), selecting the datapoint with the most uncertain prediction by the current 
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model (AL) or selecting the datapoint with the most uncertain prediction by the surrogate “teacher” 

model (YoL). At every iteration, we calculate the performance of the model on the test set by 

calculating the Matthews Correlation Coefficient (MCC). The overall learning performance was 

determined by the area under the learning curve (AULC), i.e., the numerical integral of the AULC 

as calculated by the sum of the MCC values on the test set from the first to the last iteration of AL. 

We repeated every experiment 100 times (10 distinct train/test data splits × 10 distinct learning 

runs with different initial training sets per split). To compare the performance between two 

learning strategies, we performed a two-sample t-test on the 100 AULC values, and we consider 

two methods to perform significantly different if the p-value is smaller than 0.05. 

 

Active and yoked deep learning 

For MLP, the data was divided 1:1:1 into a hyperparameter optimization set, pool set and 

test set. The hyperparameter optimization set was used to optimized the hyperparameters through 

Bayesian optimization [16] implemented in Chemprop [17], and the optimized hyperparameters 

are listed in Table S1. The pool-test set was used for learning in the same manner as for the classical 

model described above. We repeated every experiment 20 times (20 data splits × 1 initial training 

set).  
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III. Results and Discussion 

Active learning outperforms passive learning. 

 First, we surveyed the benefits of AL compared to PL on the 14 benchmark datasets using 

three different models and three different descriptors, totaling 126 test cases (3 models × 3 

descriptors x 14 datasets). For each test case, we performed 100 repeats of AL and PL. We defined 

AL as beneficial if the mean AULC values of the 100 repeats of AL are significantly greater than 

that of PL. Overall, we found that AL provided significant benefits compared to PL in 85% (107 

of 126) of cases (Fig. 2). Notably, when the Naïve Bayes model was trained using standardized 

RDKit descriptors, AL provided benefits in only 14% (2 out of 14) of the datasets, indicating that 

this model and descriptor are not a suitable combination to perform AL on our benchmarking 

datasets. We also observed that some of our AL runs exhibited “turning points” with maximum 

performance that we described before, indicating a capability of active learning to identify highly 

informative subsets of training data [18]. Overall, we observed a range of different behaviors per 

dataset, with 86% of our benchmark datasets having at least one combination of model/descriptor 

where AL did not provide significant benefits over PL. Conversely, for every dataset and 

descriptor combination, there was at least one ML model that benefited from AL compared to PL. 

This distinct behavior of AL for different models across different datasets and descriptors 

encouraged us to study the effect of YoL on these datasets and see the effect of combining different 

models with different performances. 

Yoked learning reveals a wide range of different behaviors. 

We paired all our ML models to run YoL campaigns on all our combinations of datasets 

and descriptors, leading to 252 different yoked learning campaigns (3 teacher models × 2 student 

models × 3 descriptors x 14 datasets). First, we compared YoL to PL when using the same student 
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model to assess whether a teacher model could provide any benefits over random sampling to the 

student. Using two-sample t-tests on the AULC values, we found that YoL performs better than 

PL in 69% (175 of 252) of the test cases, indicating that a surrogate teacher can provide benefits 

over random sampling in more than 2/3 of all here investigated benchmark cases. At the same time, 

the number of datasets where YoL outperformed PL is lower than the 85% beneficial rate of AL, 

indicating that AL slightly outperforms YoL in terms of the number of benchmarks where it 

outperforms PL. In terms of average AULC, both AL and YoL significantly outperformed PL (p 

< 2×10-27, two-sample t-test, Fig. 3A) and AL slightly outperformed YoL (average AULC of 163 

vs. 160, p < 3×10-5, two-sample t-test, Fig. 3A). This overall indicates that, on average, AL can 

outperform YoL and thereby attests to the utility of the model selecting its own data. However, the 

strong performance of YoL compared to PL shows that data selected by a surrogate model is vastly 

more beneficial for a model compared to random selection, opening a new avenue for yoked 

learning research.  

To better understand in which cases YoL would perform well, we analyzed the 

performance on the level of individual benchmarking datasets. We found that poor YoL 

performance was correlated with poor performance of the teacher model in AL, indicating that 

teachers that are unable to select informative data for themselves are also unable to provide 

informative data to a different student model (p = 1.6 * × 10−12, Table 3, Fisher’s exact test 1). 

Another indicator of poor YoL performance is an AL teacher performing worse than the PL student 

(p = 2.5× 10−10, Table 3, Fisher’s exact test 2), indicating that the student is more effective at 

learning the patterns in the dataset compared to the teacher even if only being provided with 

random subsets of the data. Similarly, a teacher model that is performing poorly even when training 

on the complete available training data (MCC < 0.1) is a good indicator that the model will be a 
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poorly performing teacher to any student model (p = 3.0 × 10−6, Table 3, Fisher’s exact test 3). 

In summary, the teacher’s performance appears to be the most important factor in determining 

whether YoL can succeed. Accordingly, given the trends for model performance we had observed 

during our AL benchmarks (Fig. 2), Naïve Bayes turned out to be least effective teacher (40/84 

YoL performed better than PL) while Random Forest was a more effective teacher (71/84 cases 

YoL performed better than PL). Conversely, the choice of the student model did not affect YoL 

success (p = 0.76, Table 3, Fisher’s exact test 4) nor was the relative performance between student 

and teacher relevant (p = 0.27, Table 3, Fisher’s exact test 5). This indicates that YoL is deemed 

to fail when the AL teacher model does not effectively navigate the chemical space but YoL 

benefits are largely independent of the employed student model – indicating that a strong teacher 

model could boost performance of various types of students.  

To specifically compare the performance of YoL and AL, we analyzed their performance 

on the benchmarks were both performed better than PL. We found that the benefits of AL and YoL 

using the same student model were highly correlated (Fig. 3B, Pearson’s r = 0.83). In addition, AL 

and YoL performed statistically indistinguishable in 53 cases (Fig. 3B). The higher average 

performance for AL is driven both by a larger number of cases where AL outperforms YoL (75 

cases, blue area in pie chart of Fig. 3B inset) and a small number of outlier performances where 

AL substantially outperformed YoL – indicating cases where a model benefits from its own 

selected data compared to data selected by a surrogate model. Intriguingly, the four cases where 

AL most strongly outperformed YoL used Naïve Bayes as a student model – meaning that Naïve 

Bayes is both the worst teacher and the most effective active learner in these cases (Fig 3B points 

labeled 1-4).  
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Based on this finding, we set out to investigate whether there were particularly successful 

pairings of teacher and student models for YoL (Fig. 3C). The most effective combination was a 

random forest model teaching a logistic regression model, which led to successful YoL in 86% of 

all test cases. Conversely, the least effective combination was a Naïve Bayes model teaching a 

logistic regression model, only leading to success in 45% of the test cases. Interestingly, the 

teacher-student relationships appeared largely symmetric, with a mean absolute difference in 

performance (% of benchmark cases leading to successful YoL) of only 5% when swapping 

student and teacher models. This could be in part tied to the inherent performance of these models 

on the benchmarking datasets but might also hint at relationships between models that benefit from 

specific distributions of training data. This could also help explain why Naïve Bayes models are 

not effectively taught by surrogate models (Fig. 3B). 

Finally, we specifically analyzed the cases where YoL outperformed AL, which occurred 

in a total of 43 benchmarks (orange area in pie chart of Fig. 3B inset). We noted that strong YoL 

performance is often achieved for model combinations where the performance of the actively 

learning student and teacher differs across different stages of the learning process (Fig. 3D). For 

example, in multiple cases, the student was overall better at predicting the test dataset when being 

provided with a large amount of training data, but the teacher model was able to acquire useful 

data more rapidly with better performance during the early stages of learning. In such cases, YoL 

appears to benefit from the data acquisition of the teacher model during the beginning of the 

learning campaign and subsequently benefits from the more powerful ML architecture of the 

student to make accurate predictions with more available training data (Fig. 3D). These results hint 

at possible benefits of using alternative models for active sampling, opening a new avenue of active 
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ML research that couples multiple ML models to benefit from their distinct advantages at different 

learning iterations. 

Yoked deep learning (YoDeL) 

 Deep learning models are attracting increasing attention in molecular ML. Inspired by 

advances in image and text processing through deep learning, the molecular data science 

community rapidly implemented various deep neural network architectures. Not only do some of 

these models show competitive performance, unique abilities such as self-learned molecular 

descriptors, morphing of molecules in latent spaces [19], and de novo design of new chemical 

structures through generative models expands the capabilities of the molecular data science 

toolbox [20]. However, a major drawback for most deep learning models is their time and resource-

consuming training process [21] and their hunger for large datasets, which has made the 

implementation of active deep learning (ADeL) challenging since it makes re-training after adding 

a single data instance unfeasible and leads to poor performing models during early learning 

iterations. Recent studies of ADeL bypassed slow retraining through batch selection, where 

multiple datapoints are selected based on the same model, but it is well known that this lowers the 

performance of ADeL due to redundancy in the selected datapoints [22–24]. Since classical ML 

models can be rapidly re-trained after acquisition of a single datapoint, we tested whether we can 

use classical ML models as “teachers” to actively select a useful dataset that is subsequently 

provided to a deep neural network for training. We call this protocol yoked deep learning 

(YoDeL). As a proof-of-concept, we tested YoDeL performance for a MLP using Morgan 

fingerprint as the student model since it is considered the “vanilla” base model of deep neural 

networks.  
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 We first evaluated the performance of ADeL using both default and optimized 

hyperparameters (Table S1) on all our benchmark datasets (Fig. S1). Compared to the default 

hyperparameters, the optimized hyperparameters perform better in 4 datasets (3A4, BACE, HERG, 

PGP), similar in 4 datasets (2C9, 3CL, DILI, HIA), and worse in 6 datasets (2D6, BBBM, 

Bioavailability, Carcinogens, Clintox, SKIN). This indicates that optimizing the hyperparameters 

of MLP does not improve their AL performance on our benchmark datasets, and the optimized 

hyperparameters are commonly creating deeper and wider neural networks (Table S1) which 

require longer training time at no apparent benefit. Therefore, we used default hyperparameters 

moving forward. 

 We next investigated the performance of active learning for the deep MLP model. Overall, 

ADeL outperformed PDeL in 57% (8 of 14) of the datasets. This number is considerably lower 

compared to the 85% (107 of 126, Fig. 2) for classic AL outperforming PL, indicating that using 

MLP's predictions to select data is inferior compared to classical ML models in these benchmarks 

– potentially due to the need for larger datasets to train complex MLP models. Motivated by this 

lower performance of ADeL, we analyzed the performance of YoDeL when using RF or LR as 

teachers to select data for the MLP model. RF yoked MLP outperformed ADeL for three datasets 

(3CL, BACE, Clintox) and shows no significant differences in the other 11 datasets - suggesting 

that YoDeL can maintain or even enhance the performance of ADeL. LR YoDeL performs worse 

than ADeL only in the BBBM dataset and shows no significant differences in the other 13 datasets. 

RF appears as the better teacher for MLP compared to LR, but both approaches seem to largely 

lead to competitive results instead of using the MLP directly for querying new data – indicating 

potential utility for replacing neural network-based uncertainty estimates for active learning 

through a classic surrogate model for active learning data selection. 
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 Another important advantage of YoDeL is that it effectively circumvents slow retraining 

of the MLP model at every learning iteration. To quantify this benefit, we record the CPU core 

hours needed to run the active and yoked learning campaigns (Fig. 4B). We noticed that YoDeL 

reduces running time by approximately two orders of magnitude compared to AdeL. This 

reduction was consistent across all datasets and revealed a significant practical advantage of 

YoDeL compared to ADeL.  

 Finally, we analyzed the learning curves for the BACE and Clintox datasets to understand 

why YoDeL outperforms ADeL for these datasets. For the BACE dataset, ADeL outperforms 

YoDeL but converges early while YoDeL catches up and creates a “turning point” where a subset 

of the data selected by the RF model outperforms ADeL in the second half and even outperforms 

an MLP trained on the complete dataset (Fig 4C) [18]. Conversely, for the Clintox dataset, YoDeL 

gives the MLP an early boost compared to ADeL and continues to maintain higher performance 

across most of the learning campaign except for the last 20% (Fig 4D). These examples highlight 

potential different behaviors of YoDeL and how it could benefit a deep MLP model in terms of 

both running time and learning performance. 
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IV. Conclusions 

We have here introduced and prototyped the concept of yoked machine learning for 

molecular data sciences. As an extension of the increasingly popular concept of active learning [4], 

it couples a second “student” model to an actively learning “teacher” model to train this “student” 

model with the data selected by the “teacher” model. Inspired by research in educational sciences, 

this experimental setup enables one to quantify benefits of active machine learning by comparing 

the performance of learning when a model takes an active role in selecting the data compared to 

when it is provided data that is deemed useful by another model. We evaluated the performance 

of yoked and active learning which enables us to directly quantify the contributions of active data 

selection in active learning performance. Specifically, we found that active learning overall 

performs slightly better than yoked learning and we found several cases in which active learning 

outperforms yoked learning significantly (Fig. 3B), showcasing the benefits of the active data 

selection in general and in specific use-cases. Conversely, we were also able to identify many cases 

where yoked learning performs competitively or even outperforms active data selection and 

showed that these cases are particularly driven by high performance teachers that provide high 

quality data to a student, indicating that data selected by a powerful model might be transferable 

to other machine learning models. In particular, we found that there seems to be symmetric 

relationships between specific types of machine learning models that indicate cross-compatibility 

of data selected by these models (Fig. 3C). Finally, our analysis showed that yoked learning can 

be particularly powerful when this strategy can benefit from the performance of both models, for 

example by profiting from the rapid early learning of a teacher while also benefiting from the 

overall better predictive performance of the student (Fig 3D). Such hybrid models could provide 

powerful yoked learning pipelines that benefit from the individual characteristics of each 
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employed model. Building on these insights, we here introduced the concept of yoked deep 

learning (YoDeL) where a classic machine learning model learns actively and feeds the acquired 

data to a deep neural network. We show that this workflow can lead to competitive learning 

performance (Fig. 4A) while accelerating the active data acquisition by multiple orders of 

magnitude (Fig. 4B), thereby circumventing challenges of active deep learning such as slow model 

re-fitting and poor performance on small datasets. Taken together, we believe that in the future, 

yoked learning will become a competitive option for active learning-based experimental 

workflows. By combining multiple machine learning models, this approach can benefit from the 

advantages of each model, thereby preventing shortcomings of the individual models. Yoked 

learning holds the potential to accelerate training, improve uncertainty estimations, explain 

predictions, and boost predictive performance for more efficient and effective active machine 

learning campaigns.   
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Availability of Data and Materials 

 The datasets and the code for yoked learning for classical machine learning models are 

available at https://github.com/RekerLab/YokedLearning. The code for yoked deep learning is 

available at https://github.com/Xiangyan93/ActiveLearningBenchmark. 

 

Acknowledgements 

We are grateful to the Duke Science & Technology Initiative for funding. All computations 

were run on the Duke Compute Cluster. 

 

Conflicts of Interest  

D. R. acts as a consultant to the pharmaceutical and biotechnology industry. Z.L., Y.X., 

and D.R. are co-inventors on a provisional patent application  describing systems and 

methods for yoked machine learning. 

 

 

  

https://doi.org/10.26434/chemrxiv-2023-80fd7 ORCID: https://orcid.org/0000-0003-4789-7380 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-80fd7
https://orcid.org/0000-0003-4789-7380
https://creativecommons.org/licenses/by-nc/4.0/


18 
 

References 

1.  Reker D, Schneider G (2015) Active-learning strategies in computer-assisted drug discovery. 

Drug Discovery Today 20:458–465. https://doi.org/10.1016/j.drudis.2014.12.004 

2.  Wang K, Zhang D, Li Y, et al (2017) Cost-Effective Active Learning for Deep Image 

Classification. IEEE Transactions on Circuits and Systems for Video Technology 27:2591–

2600. https://doi.org/10.1109/TCSVT.2016.2589879 

3.  Nassif AB, Shahin I, Attili I, et al (2019) Speech Recognition Using Deep Neural Networks: 

A Systematic Review. IEEE Access 7:19143–19165. 

https://doi.org/10.1109/ACCESS.2019.2896880 

4.  Reker D (2019) Practical considerations for active machine learning in drug discovery. Drug 

Discovery Today: Technologies 32–33:73–79. https://doi.org/10.1016/j.ddtec.2020.06.001 

5.  Reker D (2020) Chapter 14:Active Learning for Drug Discovery and Automated Data 

Curation. In: Artificial Intelligence in Drug Discovery. pp 301–326 

6.  Markant D, Gureckis T (2010) Category Learning Through Active Sampling. Proceedings of 

the Annual Meeting of the Cognitive Science Society 32:248–253 

7.  Huttenlocher J (1962) Effects of manipulation of attributes on efficiency of concept 

formation. Psychological Reports 10:503–509. https://doi.org/10.2466/PR0.10.2.503-509 

8.  Gureckis TM, Markant DB (2012) Self-Directed Learning: A Cognitive and Computational 

Perspective. Perspect Psychol Sci 7:464–481. https://doi.org/10.1177/1745691612454304 

9.  Huang K, Fu T, Gao W, et al (2021) Therapeutics Data Commons: Machine Learning 

Datasets and Tasks for Drug Discovery and Development. arXiv:210209548 [cs, q-bio] 

10.  Wu Z, Ramsundar B, N. Feinberg E, et al (2018) MoleculeNet: a benchmark for molecular 

machine learning. Chemical Science 9:513–530. https://doi.org/10.1039/C7SC02664A 

11.  RDKit: Open-source cheminformatics. https://www.rdkit.org 

12.  Ramsundar B, Eastman P, Walters P, Pande V (2019) Deep Learning for the Life Sciences: 

Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. O’Reilly 

Media, Inc. 

13.  Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine Learning in 

Python. the Journal of machine Learning research 12:2825–2830 

14.  (2021) Message Passing Neural Networks for Molecule Property Prediction. 

https://github.com/chemprop/chemprop. Accessed 30 May 2021 

https://doi.org/10.26434/chemrxiv-2023-80fd7 ORCID: https://orcid.org/0000-0003-4789-7380 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-80fd7
https://orcid.org/0000-0003-4789-7380
https://creativecommons.org/licenses/by-nc/4.0/


19 
 

15.  Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: 

Proceedings of the 27th International Conference on International Conference on Machine 

Learning. Omnipress, Madison, WI, USA, pp 807–814 

16.  Bergstra J, Yamins D, Cox D (2013) Making a Science of Model Search: Hyperparameter 

Optimization in Hundreds of Dimensions for Vision Architectures. In: Proceedings of the 

30th International Conference on Machine Learning. PMLR, pp 115–123 

17.  Yang K, Swanson K, Jin W, et al (2019) Analyzing learned molecular representations for 

property prediction. J Chem Inf Model 59:3370–3388. 

https://doi.org/10.1021/acs.jcim.9b00237 

18.  Wen Y, Li Z, Xiang Y, Reker D (2023) Improving molecular machine learning through 

adaptive subsampling with active learning. Digital Discovery 2:1134–1142. 

https://doi.org/10.1039/D3DD00037K 

19.  Gilmer J, Schoenholz SS, Riley PF, et al (2017) Neural message passing for quantum 

chemistry. In: Proceedings of the 34th International Conference on Machine Learning - 

Volume 70. JMLR.org, Sydney, NSW, Australia, pp 1263–1272 

20.  Gómez-Bombarelli R, Wei JN, Duvenaud D, et al (2018) Automatic Chemical Design Using 

a Data-Driven Continuous Representation of Molecules. ACS Cent Sci 4:268–276. 

https://doi.org/10.1021/acscentsci.7b00572 

21.  Shi S, Wang Q, Xu P, Chu X (2016) Benchmarking State-of-the-Art Deep Learning 

Software Tools. In: 2016 7th International Conference on Cloud Computing and Big Data 

(CCBD). pp 99–104 

22.  Zhang Y, Lee AA (2019) Bayesian semi-supervised learning for uncertainty-calibrated 

prediction of molecular properties and active learning. Chem Sci 10:8154–8163. 

https://doi.org/10.1039/C9SC00616H 

23.  Graff DE, Shakhnovich EI, Coley CW (2021) Accelerating high-throughput virtual screening 

through molecular pool-based active learning. Chem Sci 12:7866–7881. 

https://doi.org/10.1039/D0SC06805E 

24.  Soleimany AP, Amini A, Goldman S, et al (2021) Evidential Deep Learning for Guided 

Molecular Property Prediction and Discovery. ACS Cent Sci 7:1356–1367. 

https://doi.org/10.1021/acscentsci.1c00546 

 

https://doi.org/10.26434/chemrxiv-2023-80fd7 ORCID: https://orcid.org/0000-0003-4789-7380 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-80fd7
https://orcid.org/0000-0003-4789-7380
https://creativecommons.org/licenses/by-nc/4.0/


20 
 

 

Fig.1 Schematic of yoked machine learning concept 
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Fig. 2 Learning curves of active learning (AL, red) versus passive learning (PL, blue) on 14 

datasets × 3 molecular descriptors × 3 machine learning models. Gray colored blocks indicate that 

active learning is significantly better than passive learning, while white blocks indicate no 

significant difference between active learning and passive learning or passive learning 

outperforming active learning. 
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Fig. 3: Yoked Learning Results. (A) Area under learning curve of active learning (AL), yoked 

learning (YoL), and passive learning (PL) across all benchmarks. AL and YoL significantly 

outperformed PL (p < 2×10-27, two-sample t-test) and overall performance of AL was higher than 

YoL (p < 3×10-5, two-sample t-test). (B) Correlation plots for improved performance of YoL and 

AL on the benchmarking studies where both AL and YoL performed better than PL. Every dot 

corresponds to a combination of teacher model, student model, descriptor, and dataset. Delta 

AULC is calculated by subtracting PL AULC values from AULC achieved by YoL or AL. Dots 

are colored depending on whether YoL (orange) or AL (blue) perform significantly better than the 

other approach, with dots colored in gray if YoL and AL performance is statistically 

indistinguishable. The pie chart in the inset shows the relative number of benchmarks (dots) where 

AL and YoL perform better or are statistically indistinguishable. Points labeled as 1-4 highlight 

cases where AL performs much better than YoL. These are (1) RF teaching NB on BACE using 

RDKit descriptors, (2) LOG teaching NB on BBBP using MACCS, (3) RF teaching NB on BBBP using 

MACCS, (4) RF teaching NB on BACE using MACCS. (C) The percentage of cases where YoL 

outperforms PL among all benchmarks pairing a specific teacher and student model show that 

teacher/student relationships can be symmetric. (D) MCC learning curves for yoked machine 
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learning using circular fingerprints for the human intestinal absorption (HIA) dataset. The student 

model is naive bayes while the teacher model is random forest.  
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Fig. 4: Yoked Deep Learning Results. (A) Normalized AULC of ADeL, PDeL-MLP, RF YoDeL 

and LR YoDeL. (B) CPU core hours. (C) Learning curves of ADeL, PDeL, and RF YoDeL for 

the BACE dataset. (D) Learning curves of ADeL, PDeL, and RF YoDeL for the Clintox dataset.  
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Table 1 Description and number of datapoints for the datasets used in this study. 

Dataset no. of molecules description 

2C9 666 CYP2C9 Substrate 

2D6  664 CYP2D6 Substrate 

3A4 667 CYP3A4 Substrate 

3CL 879 Activity against SARSCoV2 3CL Protease 

DILI 475 Drug induced liver injury 

HIA 578 Human intestinal absorption 

BACE 1513 Inhibition of human β-secretase 1 

BBBP 1975 Ability to penetrate the blood-brain barrier 

Bioavail. 640 Oral bioavailability of drugs 

Carcinogen. 278 Carcinogenic potential 

Clintox 1484 Toxicity observed in clinical trials 

hERG 648 Human ether-à-go-go related gene blocker 

P-gp 1212 P-glycoprotein inhibition 

Skin 404 Skin reaction 
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Table 2: Contingency tables of Fisher’s exact tests used to analyze yoked learning performance. 

 

T: teacher model. S: student model. P: passive. T-T: active learning using teacher model. T-S: 

yoked learning. P-T: passive learning, teacher model for prediction. P-S: passive learning, student 

model for prediction. P-S < T-S: the average AULC of P-S is significantly lower than the average 

AULC of T-S. S =LR/NB/RF: Student model is logistic regression / naïve Bayes / random forest. 

MCCT/S,all: MCC performance on the test set by the teacher / student model trained using all 

training data. 

 

Fisher’s exact test 1 (p-value=1.6× 10−12) Fisher’s exact test 2 (p-value=2.5× 10−10) 

 P-S < T-S P-S ≥ T-S  P-S < T-S P-S ≥ T-S 

P-T < T-T 168 46 P-S < T-T 137 28 

P-T ≥ T-T 7 31 P-S ≥ T-T 38 49 

Fisher’s exact test 3 (p-value=3.0× 10−6) Fisher’s exact test 4 (p-value=0.76) 

 P-S < T-S P-S ≥ T-S  P-S < T-S P-S ≥ T-S 

MCCT,all <0.1 5 17 S=LR 61 23 

MCCT,all ≥0.1 170 60 S=NB 57 27 

   S=RF 57 27 

Fisher’s exact test 5 (p-value=0.27) 

 P-S < T-S P-S ≥ T-S 

MCCS,all < MCCT,all  92 34 

MCCS,all ≥ MCCT,all 83 43 
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